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SUMMARY 
Numerical studies of turbulent flow in an axisymmetric 45" expansion combustor and bifurcated diffuser are 
presented. The Navier-Stokes equations incorporating a k-c model were solved in a non-orthogonal 
curvillinear co-ordinate system. A zonal grid method, wherein the flow field was divided into several 
subsections, was developed. This approach permitted different computational schemes to be used in the 
various zones. In addition, grid generation was made a more simple task. However, treatment of the zonal 
boundaries required special handling. Boundary overlap and interpolating techniques were used and an 
adjustment of the flow variables was required to assure conservation of mass flux. Three finite differencing 
methods-hybrid, quadratic upwind and skew upwind-were used to represent the convection terms. 
Results were compared with existing experimental data. In general, good agreement between predicted and 
measured values was obtained. 
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INTRODUCTION 

Over the past several years, numerical computation of turbulent flows has been an active research 
subject. Because of the complexity involved in finding solutions, most turbulent flow studies have 
dealt with flows in regularly shaped geometries in which the boundaries coincided with the co- 
ordinate lines of either a Cartesian or a cylindrical co-ordinate system. For irregularly shaped 
flow domains, in which the mesh points of the grid system do not fall on the boundaries, a 
relatively large amount of computation in the form of interpolation is required. 

Numerical grid generation has been developed to tackle flow problems in irregular geometries. 
By this technique, a grid system is numerically generated from a set of partial differential 
equations. The grid nodes thus generated follow the shape of the flow configuration, and part of 
the new co-ordinate lines coincide with boundary segments of the physical plane. In essence, this 
technique maps an irregular shape in the physical domain into a rectangular shape in the 
computational domain, thus permitting the governing equations to be computed on a uniform 
mesh without the necessity for interpolation for the boundary points. 

Applications of numerical grid generation and co-ordinate transformation to turbulent flow 
problems have recently appeared in the literature.'-' Although grid generation does help to 
simplify problems involving flow fields with arbitrarily shaped boundaries, it is obvious that as 
the geometry becomes more complex, grid generation itself also becomes a more difficult task. 
Construction of a single grid system that covers the entire flow field would be very difficult for 
complicated flows such as the flow through a gas turbine combustor with several passages. In 
such cases, a better approach would be to divide the field into several subregions and generate an 
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independent grid for each subregion. Grid generation would therefore be a much easier process. 
This method has been referred to as a zonal approach or a grid-patching technique. With the 
zonal approach, better utilization of the available number of grid points can be realized. 
Moreover, this approach facilitates the use of different computational methods in each of the 
zones. This has the potential to save computational time because less complicated schemes can be 
used in certain areas of the field. Moreover, a zonal approach provides a means for examining 
regions where results may be more sensitive to the numerical method employed. 

The zonal grid method has been incorporated into many calculations involving solution of 
Euler's equation (e.g. References 8-12). However, it has not been applied to turbulent flows. 
Recently, Shyy13 underscored the need for using zonal grid methods in turbulent flow compu- 
tations. Shyy simulated turbulent flow in an annular dump diffuser. He found that a single grid 
system, generated over the whole domain, caused the grid density in the annular tube to be much 
larger than that in the dump region. Moreover, he experienced difficulty in refining the grid in 
sharp corner regions. This problem could be alleviated by using a zonal grid approach in which 
the dump diffuser is divided into two regions: a dump region with a fine mesh and an annular 
region with a coarse mesh. 

The division of a given flow field into subregions introduces grid boundaries in the calculation 
domain. Since either grid lines or transformation metrics may not be continuous at the interface 
of any two zones, care must be exercised in treating interface points in order to transfer 
information accurately. In fact, proper zonal boundary treatment is a key ingredient for successful 
application of this technique. 

The present study is aimed at the development of a zonal boundary scheme for the calculation 
of turbulent flow in complex geometries. The scheme will be tested for flow in a 45" expansion 
combustor and for flow in an axisymmetric annular bifurcated diffuser. 

ANALYSTS 

Governing equation and boundary conditions 

flow may be written in general as 
The general form of the steady, time-averaged, equation governing axisymmetric turbulent 

where # represents any of the dependent variables u, v, k and E ;  S,  is the source term for the 
variable 4 which includes generation, dissipation and terms not covered by convection and 
diffusion; and r, is the effective exchange coefficient. Relations for r, and S ,  for each variable and 
the constants appearing in the turbulence model can be found elsewhere (e.g. References 14 and 
15). Since the flow domains are assumed to be irregular, the governing equations will be expressed 
in a non-orthogonal curvilinear co-ordinate system. The chain rule is used to introduce new 
independent variables ( and '1 which replace x and r in equation (1). The transformed equations 
are 

where 

Fg = ur, - vx,, F,, = vxg -urc 



AXISYMMETRIC TURBULENT FLOW 169 

and the geometric factors u, /3, y and J are defined as 

a = x,‘ + r i ,  /?= xcx4 + rt;rq, y = xg + rg, J =xcr, ,-xrrt .  

The physical significance of several of the terms given above may be advanced: F S / J u  and 
F J J y  are the covariant velocity components normal to lines of constant q and 5 respectively; Ju 
and J y  represent the distances between two grid points in the and u directions; /3 is the measure 
of the orthogonality between the 5 and q lines-/? vanishes when these co-ordinate lines are 
orthogonal; finally, J denotes a differential area element in the ( 5 ,  ?) plane. 

Equation (2) has been used by ShyyI3 to solve for turbulent flow in a dump diffuser. A plane 
two-dimensional form of this equation was used by Rhie and Chow6 to determine flow past an 
isolated aerofoil. Further, a three-dimensional form was used by Hah’ for flow in a turbine 
blade row. 

Boundary conditions for the above equation in the transformed domain are derived from 
physical arguments. At the inlet, Dirichlet conditions are applied and the dependent variables in 
both co-ordinates remain the same, so that 

4(5? ?) = 4(x9 4. (3) 
At the flow outlet and along the duct centreline, Neumann boundary conditions are generally 
employed. The derivatives of a variable in a direction normal to a constant-5 line and a 
constant-? line are given respectively as 

At the solid boundaries, a wall function is used to provide the boundary conditions for nodes 
nearest the surface.14 

Solution method 

Equation (2) is solved in the transformed co-ordinate system by employing the finite volume 
method to discretize the equation and by incorporating the SIMPLE algorithm.I6 The SIMPLE 
algorithm involves a series of steps of prediction and correction for the coupling of velocities and 
pressure. 

The finite difference equation for the prediction of velocities is obtained by integrating the 
governing equation over a control volume in a staggered grid system and using appropriate finite 
differencing methods to represent the convective and diffusion terms at the control volume 
boundaries. In present study, three differencing methods-hybrid, quadratic upwind” and skew 
upwind’8-were used for the convective flux, and central differencing was used for the diffusion 
flux. Upon introduction of these forms of differences, a discretized relation between the variable at 
a central point P and its neighbouring values is obtained, namely 

In this expression the A are the coefficients of the convective and diffusion fluxes obtained for the 
various differencing schemes. The terns containing fl are usually small and are combined with the 
source term, and treated as known quantities using the most recently available values. It is noted 
that both quadratic and skew methods involve nine points in the interpolation of the convective 
flux. In order to fit a five-point stencil, the extra terms in these methods are lumped into the 
source terms. Because equation (5 )  has the same form as derived from a Cartersian co-ordinate 
system, the SIMPLE algorithm as originally presented can be used without alteration. The 
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matrix is solved using the tridiagonal matrix algorithm (TDMA) and by a line-by-line iteration 
method; line sweeps are in the primary flow direction, so that the change of flow condition from 
upstream can be immediately conveyed downstream. The velocity field obtained from equation 
(5) ,  however, may not satisfy the continuity equation and requires adjustment. The adjustment of 
velocities is connected to the pressure change, denoted here as p', through the following formulae: 

These equations can be derived from the corresponding momentum equations. Substituting the 
corrected velocities into the continuity equation and integrating over a control volume yields a 
partial differential equation governing the pressure correction p ' :  

where 

CO =Dux:  -k D"ri ,  fl' = D"xsxV + Durgr,,, 

and ifzp is the continuity equation imbalance based on predicted velocites. Since the cross- 
derivative p' terms are relatively small, it was found that solutions obtained by omitting them 
were not greatly affected. Therefore these terms were dropped and a central difference was used 
for the derivatives of p'. The final form of equation (7), written in an analogous fashion to 
equation (3, is then 

y' = D u x ;  + D"r; 

The boundary conditions for the p' equation are that the derivatives in the normal direction on 
the boundaries vanish. Values of the pressure on the boundary were linearly extrapolated from 
the values at the interior points. 

Once the velocities were predicted and corrected, Fc and Tq were then calculated to update the 
mass flow rate. The mass flow rate through each axial plane was monitored after each iteration, 
and when the residue divided by the inlet mass flow rate was less than the solution was 
regarded as converged. 

Zonal boundary scheme 

In the use of a zonal grid approach, the mesh for various regions of the field is generated 
separately. Therefore the grid lines extending across two adjoining regions may not align with 
each other, and the transformation metrics across the zonal interface may not be continuous. 
Computation using a zonal grid method is based on the idea that each region of the field may be 
treated independently as a boundary value problem. The required boundary conditions were 
obtained either from physical arguments or from information supplied from adjacent regions 
using proper zonal boundary schemes. Across zone interfaces, two considerations must be 
observed: continuity of the dependent variables and conservation of fluxes. In the present work a 
conservation form is developed that uses an interpolation method to transfer data from a coarse 
grid region to a fine grid region, and an integration method is used for the reverse process. 

Consider the pair of discontinuous grids shown in Figure 1; the fine grid region is called zone 1 
and the coarse grid region zone 2. Suppose the solution is to be advanced on the fine grid zone. 
The calculation of the dependent variables at the position of line AB requires values at the 
downstream points. To obtain the values at these points from zone 2, an overlapping region is 
generated by extending the constant-7' lines of zone 1 into zone 2 to intersect with the line CD. 
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A C  

Figure 1. Zonal boundary scheme for (a) updating fine grid points, (b) updating coarse grid points 

This overlapping forms extra control volumes at the outlet of zone 1. Values of the dependent 
variables enclosed in these outer control volumes located either at the cell face or at its centre are 
obtained by interpolation of values from the coarse grid. For example, a variable located at the 
cell face (marked x )  of a control volume PRST in Figure l(a) is found by the interpolation of 
values from its coarse grid neighbouring points (marked 0). The values at the - x locations are 
then adjusted in order to satisfy global conservation as calculated from the coarse grid at the 
same cross-section. The global conservation property is satisfied by requiring that 

rc rc 

where gf and g' are the fluxes through the zonal boundary CD for zone 1 and zone 2 respectively, 
and dq' and dq" are the corresponding elements of area normal to the flow direction. In a similar 
manner, flow properties located at the cell centre can also be updated. The accuracy of the results 
depends upon the order of the interpolation scheme. A third-order Lagrange polynomial was 
used to interpolate the values of u, u and p. However, a higher-order polynomial might over- or 
under-correct the interpolated values. When this method was applied to interpolate turbulence 
quantities, owing to the large variation in the radial direction, unrealistic negative kinetic energy 
or dissipation energy values were obtained. Therefore a linear scheme was used. 
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To update the zonal boundary points of the coarse grid, the overlapped region is constructed 
by extending the constant-q' lines of zone 2 into zone 1. Consequently, these lines will intercept 
the line EF and form control volumes outside zone 2. The dependent variables enclosed in these 
exterior control volumes are established by an integration method which preserves the conser- 
vation properties of flow across the cell boundaries. For a control volume in the coarse grid 
having the boundary PQ, as shown in Figure l(b), the flux across this area must equal that 
crossing the corresponding boundaries of the fine grid, i.e. 

1 
g'= -7 g'dq' 

Av 
If a piecewise constant variation of g between two grid points is assumed, the above equation can 
be rewritten in discretized form as 

where N j  is the fraction of flux of each control volume in zone 1 that enters the corresponding 
control volume of zone 2. It is noted that when Aq' equals Aq', g' will be equal to g' and the flow 
properties will vary continuously across the boundary. 

The zonal boundary procedure was applied at each iteration. When the computation was 
advanced from one zone to another, the zonal boundary points were first updated and then the 
interior points were computed. 

RESULTS AND DISCUSSION 

To verify the numerical methods developed above, predicted results are compared with existing 
experimental values for flow in a 45" expansion combustor and in a annular bifurcated diffuser. 

Flow in a 45" expansion combustor 

To simulate this flow, the inlet boundary conditions were taken from experimental conditions 
obtained by Chaturvedi: l 9  the velocity profile was flat and the Reynolds number was 2.5 x lo5. 
The duct expansion ratio is 2.0. The inlet conditions for turbulence kinetic energy and dissipation 
energy were not provided by Chaturvedi and therefore had to be estimated. According to 
Gosman et and Lilley and Rhode," the latter two parameters may be written as k=0*03u: 
and E = k"s/0005D.  

The flow domain of a 45" expansion combustor is divided into two zones separated by a zonal 
boundary. A fine grid was used to cover the inlet zone and the recirculation region, and a coarse 

Figure 2. Grid distribution for a 45" expansion combustor 
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grid was used to cover the downstream region. In the fine grid zone, two nets were used: 30 x 30 
and 15 x 20. In the coarse grid zone, only a 5 x 12 net was constructed. The grid lines were evenly 
spaced in the radial direction but clustered in the flow inlet. Figure 2 s h w s  the grid distribution 
for a 30 x 30 fine grid and the 5 x 12 coarse mesh. The discontinuity of co-ordinate lines at the 
zone interface is self-evident. Prior to the grid selection, calculations using a single grid system 
were made on a 41 x 22 and on a 46 x 29 mesh. The grid lines were clustered at the flow inlet and 
near the solid wall. The reattachment lengths predicted from both grid systems were found to be 
comparable. Therefore it is not expected that the results can be significantly improved by 
increasing the number of grid points. Consequently, the number of grid nodes used in the zonal 
grid approach is chosen to be the same as that used for the single grid system. Prior testing with 
different computational schemes revealed that the final solution was determined more by how the 
flow was calculated in the upstream region than by what differencing methods were used in the 
downstream zone. From this observation, and the fact that the downstream flow is nearly parallel 
to the axial co-ordinate lines, thus minimizing the diffusion error due to flow direction and grid 
line skewness, computations were made using various differencing schemes in the fine grid zone, 
while the hybrid scheme was always applied in the coarse grid region. 

The reattachment length of the recirculation was first examined. Table I presents the calculated 
results for various computational schemes and meshes. Also listed is the measured length as 
reported by Chaturvedi.” This value is 4.5 times the inlet diameter. ’The differences between the 
predicted and measured lengths range from 10 to 30% depending upon the numerical methods 
considered. The hybrid scheme produced the most accurate results of the three differencing 
schemes tested. Predictions based on the quadratic upwind scheme are mixed, while those based 
on the skew upwind scheme are seen to be very low for both the single and the zonal grid 
calculations. There are several possible sources for the discrepancies, which include the tur- 
bulence model, the numerical method and the grid system. At this point, it is not known which of 
these factors contributes the most to the discrepancy. 

The velocity profiles computed on the 30 x 3G 5 x 12 zone mesh system are shown in Figure 3. 
The results from the other two grid systems are similar and therefore are shown here. The 
predictions compare favourably with the experimental data for most locations. The poorest 
agreement occurs in the middle portion of the duct at x / D  = 3.0. In the wall region, the predicted 
velocities vary according to the differencing method used. Consequently, estimation of the 
reattachment length can be expected to differ even though the velocity field comparison is good 
for most regions of the flow. The velocity decay along the duct centreline is shown in Figure 4. 
The comparison is seen to be reasonably good within the recirculation region, but produces 
overestimated results farther downstream for the three differencing methods used. Theladial 
distributions of turbulence intensity at different stations are shown in Figure 5. Since u’u’ was 

Table 1. Reattachment length of a 45“ expansion combustor 

Measurement: 4 5  

Prediction 

41 x 2 2  1 5 x 2 0 , 5 x 1 2  3Ox30 ,5x12  

Hybrid 4.19 3.88 4.14 
Quadratic 4-05 4.84 3.95 
Skew 3.04 3.15 335 
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Figure 3. Axial velocity profiles at various locations for flow in a 45" expansion combustor 
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Figure 4. Centreline velocity for flow in a 45" expansion combustor 

measured in the experiments, in order to make the comparison, it was assumed that the velocity 
fluctuations were the same in all directions, so u' = , /(2k/3). The predictions were not accurate at 
the upstream positions shown, i.e. at x / D =  1.0 and 3.0. On the other hand, the predictions were in 
good agreement with the experimental values at  the position x / D = 8 - 0 .  The maximum error 
occurred at r / D = 0 * 5  and was approximately 15%. At x / D =  1.0 and 3.0 the calculated values are, 
for the most part, well below the measured values. The error, as pointed out by Habib and 
white la^,^.^' arises from the extra strain terms in the calculation of both the Reynolds stresses 
and the dissipation rate, and from inappropriate application of Boussinesq's hypotheses. 

Figures 6 8  depict streamline contours of the flow, and contours of the axial velocity and the 
turbulence intensity respectively. These plots are based on the calculations using the hybrid 
scheme. The contours in each zone are plotted independently of each other. Lines of constant 
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Figure 5. Turbulence intensity at various axial locations for flow In a 45" expansion combustor 

I y= 1.0 

Figure 6. Streamlines of the flow in a 45" expansion combustor 

Figure 7. Axial velocity contours for flow in a 45' expansion combustor 

velocity and the flow streamlines are seen to be continuous across the zonal boundary. However, 
discontinuities in the contours of the turbulence intensity may be observed because a less accurate 
interpolation scheme was used for this variable. These plots are similar to the predictions of 
Habib and Whitelaw3 and are also compatible with Chaturvedi's  measurement^.'^ The maxi- 
mum reverse flow was found to be about 18% of the total mass flow rate at a location 
approximately one inlet diameter downstream of the flow inlet. High turbulence intensity was 
generated along the shear layer, and the maximum value was located at the position x/D=3.0 .  
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Figure 8. Turbulence intensity contours for flow in a 45" expansion combustoi 

Flow in  an annular bifurcated difurser 

The annular bifurcated combustor prediffuser is designed to provide maximum efficiency, in 
terms of the pressure recovery, for the shortest length. The diffuser divides the flow into two 
parallel passages and directs almost equal amounts of flow to corresponding combustor chambers. 

The flow simulation uses the experimental conditions of Lown et a1." In their experiments, 
three different inlet velocity profiles were generated to test the performance of the diffuser, but 
only one of them, designated as the centre peaked velocity profile, is employed in this study. At  
the inlet, the Reynolds number is approximately 2.2 x lo5 and the Mach number is about 0.247. 
Thus the fluid can be treated as incompressible. The inlet conditions of kinetic energy and 
dissipation rate were estimated as in the 45" expansion combustor case. Since the diffuser is short, 
the usual boundary condition of zero normal gradient for dependent variables at the exit may not 
be realized. Thus the exit boundary condition is assumed to be such that the second derivative of 
each variable with respect to is zero. The velocity components at the outlet of both ducts are 
obtained from inner values and adjusted to satisfy the overall mass conservation. I t  is noted that 
flow rates through the inner duct and the outer duct were not specified, but rather were permitted 
to seek individual balances. The bifurcated diffuser was divided into three computational zones: 
an inlet zone, and upper and lower branch zones. Two different grid systems were used in the 
computations. The coarse grid has an 1 1  x 15 mesh in the inlet area and a 14 x 1 1  mesh in each of 
the upper and lower branches. The fine grid has 16 x 25, 21 x 17 and 21 x 17 grid points for the 
inlet and the two branches respectively. The grid distribution for the zoned grid system is shown 
in Figure9. Because each flow region is enclosed by a simple block, the grids were easier to 
generate. 

The ratio of the mass division for various differencing methods and grid systems was examined 
and is tabulated in Table 11. The table also includes the measured values and the results computed 
from a 36 x 25 single grid mesh. The skew upwind difference scheme and the hybrid difference 
scheme produced results with less grid dependency, and differed by approximately 3.5% from the 
measured values. On the other hand, the predictions based on the quadratic difference scheme did 
not possess these characteristics; the results were found to be better when using the coarse grid 
than when using the fine grid. On the fine grid, the mass flow rate was overpredicted in the outer 
duct and underpredicted in the inner duct. The velocity distributions at the diffuser outlet are 
compared with experiments in Figure 10. The experimental data were scaled so as to have the 
same basis as that used in the simulation. I t  can be seen that the predicted shapes of the velocity 
profiles generally agree with the experimental data. However, there is a difference between 
predicted and measured values in the regions near the solid wall. The velocity contours obtained 
by using the three differencing methods are shown in Figure 11. The distributions are similar for 
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Table 11. Mass split ratio in a bifurcated diffuser 

Measurement: outer duct 48%, inner duct 52% 

Prediction 

31 x25 11 x 15,14x 11,14x 1 1  16x25,21 x 17,21 x17 

Outer Inner Outer Inner Outer Inner 
Hybrid 49.4 506 48.1 51-9 46.3 53.7 
Quadratic 49.0 51.0 46.8 53.2 51.2 48.8 
Skew 49.2 50.8 47.2 52.8 48.6 51.4 

1.0 

C 

v) 

g 0.5 

0.0 

Outer duct Inner duct 

0.0 0.5 0.0 0.5 1.0 

ululn 

Figure 10. Velocity profiles at the outlet of a bifurcated diffuser, computed on a fine zoned grid 
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Fig. I 1  (a-b) 
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(C) 

Figure 11.  Velocity contours for flow in a bifurcated diffuser: (a) hybrid; (b) quadratic; (c) skew 

the hybrid and the skew upwind scheme, but show some differences at the upper duct for the 
quadratic upwind scheme because of the overprediction of the velocity by this scheme. Across the 
zonal boundaries, the contours are observed to be smooth at most locations. Near the upper wall, 
some discontinuity occurs. In that region, the velocity gradient is large; consequently it is felt 
either the interpolation scheme or the plotting routine could cause this discontinuity. Lines of 
constant pressure coefficient are shown in Figure 12. A discontinuity is observed at the position 
where the ducts divide. The pressure is very high at the apex of the flow divider and abruptly 
decreases along the divider wall; the pressure gradients are so large that, in addition to the reason 
mentioned above, the grid in this region may not be fine enough to completely describe the 
pressure distribution. At the exit of the outer duct, the predicted results are somewhat different 
depending on the numerical method used. All three methods predicted separation at the upper 
corner. However, this flow separation phenomenon was not observed in the experiments. The 
pressure coefficients along the inner and outer casings are compared in Figures 13(a) and 13(b) 
respectively. The predicted results shown in Figure 13 are the average values of those obtained by 
the three differencing methods. Along the outer wall the prediction is reasonably good, although 
the error is large--nearly 30% at some locations. On the inner wall the methods used over- 
estimate the pressure. It is not clear whether the disagreement is related to the computations or 
attributable to some experimental difficulty. 

In both the 45" combustor geometry and the bifurcated diffuser, it is found that predictions 
using the quadratic or the skew upwind schemes are not better than that based on the hybrid 
scheme. The purpose of incorporating advanced differencing schemes is to reduce the false 
diffusion which occurs when the flow is oblique to the grid lines. However, in this study, the 
stream-to-grid angle is small except in the recirculation region; false diffusion does not appear to 
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(b) 

Fig. 12 (a-b) 
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(Cl 

Figure 12. Pressure distribution in a bifurcated diffuser: (a) hybrid; (b) quadratic; (c) skew 

x Icm) x Icm) 

(a) (b) 

Figure 13. Pressure coefficient along the casing of a bifurcated diffuser: (a) inner casing (b) outer casing 
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be a problem. In addition to the low oblique angles, the effective viscosity in turbulence flow is 
much larger than the molecular viscosity, hence false diffusion becomes less important.23 

CONCLUDING REMARKS 

Turbulent flows in different combustor and diffuser geometries were predicted using a body-fitted 
co-ordinate transformation and a zonal grid method. By the latter, the entire flow field was 
partitioned into subsections each having its own grid density and local computational scheme. A 
conservative scheme was developed to generate the zonal boundary conditions. The zonal 
boundary scheme was numerically stable in the test cases and permitted flow properties to be 
transferred smoothly across the interface. From the foregoing computations, it has been demons- 
trated that zonal grid calculations are capable of producing results that are in reasonable 
agreement with measured values and are of the same quality as those using a single grid system. 
The zonal approach has the additional advantage of permitting optimized utilization of the 
overall grid points for the best resolution. Unfortunately, the computation, when crossing a zone 
interface, requires either integration or interpolation to update the boundary points of another 
zone. This additional procedure requires extra computer time, which tends to offset the savings 
from using less grid points. 

Quadratic upwind and skew upwind differencing methods have been incorporated into the 
solution algorithm to evaluate the influence of numerical diffusion. From comparisons of the 
velocity, pressure and turbulence intensity distributions, it is seen that these advanced schemes 
did not show any significant improvement over conventional hybrid differencing. 
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